00 5 The Ŵ - orbit of ρ , Kostant ’ s formula for powers of the Euler product and affine Weyl groups as permutations of Z Paola Cellini Pierluigi

نویسندگان

  • Paola Cellini
  • Pierluigi Möseneder Frajria
  • Paolo Papi
چکیده

Let an affine Weyl group Ŵ act as a group of affine transformations on a real vector space V . We analyze the Ŵ -orbit of a regular element in V and deduce applications to Kostant’s formula for powers of the Euler product and to the representations of Ŵ as permutations of the integers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 6 The Ŵ - orbit of ρ , Kostant ’ s formula for powers of the Euler product and affine Weyl groups as permutations of Z Paola

Let an affine Weyl group Ŵ act as a group of affine transformations on a real vector space V . We analyze the Ŵ -orbit of a regular element in V and deduce applications to Kostant’s formula for powers of the Euler product and to the representations of Ŵ as permutations of the integers.

متن کامل

2 3 N ov 2 00 3 ABELIAN SUBALGEBRAS IN Z 2 - GRADED LIE ALGEBRAS AND AFFINE WEYL GROUPS

Let g = g0 ⊕ g1 be a simple Z2-graded Lie algebra and let b0 be a fixed Borel subalgebra of g0. We describe and enumerate the abelian b0-stable subalgebras of g1. §

متن کامل

1 1 D ec 2 00 3 ABELIAN SUBALGEBRAS IN Z 2 - GRADED LIE ALGEBRAS AND AFFINE WEYL GROUPS

Let g = g0 ⊕ g1 be a simple Z2-graded Lie algebra and let b0 be a fixed Borel subalgebra of g0. We describe and enumerate the abelian b0-stable subalgebras of g1.

متن کامل

Abelian Subalgebras in Z 2 - Graded Lie Algebras and Affine Weyl Groups

Let g = g0 ⊕ g1 be a simple Z2-graded Lie algebra and let b0 be a fixed Borel subalgebra of g0. We describe and enumerate the abelian b0-stable subalgebras of g1.

متن کامل

Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra

If g is a complex simple Lie algebra, and k does not exceed the dual Coxeter number of g, then the k coefficient of the dim g power of the Euler product may be given by the dimension of a subspace of ∧g defined by all abelian subalgebras of g of dimension k. This has implications for all the coefficients of all the powers of the Euler product. Involved in the main results are Dale Peterson’s 2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005